# Journal of The Marine Biological Association of India

ABBREVIATION : J. mar. biol. Ass. India

| Vol. 31 | June and December 1989 | No. 1 & 2 |
|---------|------------------------|-----------|
|         |                        |           |

## TREND OF TUNA LANDINGS IN THE INDIAN OCEAN\*

T. Sakurai

Indo-Pacific Tuna Development and Management Programme (IPTP) Colombo, Sri Lanka

#### ABSTRACT

Species composition of tunas and tuna-like fishes, their catch by different gears, catch trend of different species from 1952 to 1985 from different areas in the Indian Ocean are elaborately discussed in this paper.

#### INTRODUCTION

FAO STATISTICS shows that the world catch of marine fish was 75 million tonnes (t) for 1985. This was an increase of 17% over 1979. Tuna and tuna-like species including seerfish and billfish contributed 3,153 thousand tonnes for 1985. This was an increase of 28% over 1979. The total catch of tuna and tunalike fishes in the Indian Ocean for 1985 was 495 thousand tonnes. This was an increase of 90% over 1979. In the Atlantic and Pacific Oceans, the catches of tuna and tuna-like fishes increased 31% and 18% over 1979, respectively. The highest increase in the catch of tuna and tuna-like fishes was in the Indian Ocean (Table 1).

#### CATCH COMPOSITION

In the Indian Ocean, there are 20 species of tuna and tuna-like fishes including 11 species of tunas, 4 species of seerfish and 5 species of billfish (Table 2).

Figure 1 shows the catch composition by species. The dominant species in the Indian Ocean are skipjack and yellowfin tunas representing 27.8% and 19.1%, respectively, of the total. Small tunas including longtail, kawa-kawa, frigate, bullet tuna, Indo-Pacific bonito and also unclassified tunas consists of 20% out of the total. Seerfish consisting of narrow-barred king mackerel and Indo-Pacific mackerel and wahoo shares 15.0% of the total. Billfish consisting of marlins, sailfish and swordfish shares only 2.7%.

Comparing the catch composition between 1974 and 1986, there have been percentage

<sup>\*</sup> Presented at the 'Symposium on Tropical Marine Living Resources' held by the Marine Biological Association of India at Cochin from January 12-16, 1988.

| Ocean                            | 1979   | 1980   | 1 <b>981</b> | 1982   | 1983   | 1984   | 1985        |
|----------------------------------|--------|--------|--------------|--------|--------|--------|-------------|
| Indian Ocean                     | 260    | 276    | 285          | 354    | 381    | 431    | 495         |
| %                                | 100    | 106    | 110          | 136    | 147    | 166    | <b>19</b> 0 |
| Atlantic Ocean                   | 460    | 515    | 559          | 638    | 614    | 541    | 604         |
| %                                | 100    | 112    | 122          | 139    | 133    | 118    | 131         |
| Pacific Ocean                    | 1741   | 1842   | 1805         | 1796   | 1943   | 2137   | 2053        |
| %                                | 100    | 106    | 104          | 103    | 112    | 123    | 118         |
| Total                            | 2462   | 2635   | 2650         | 2789   | 2939   | 3111   | 3153        |
| %                                | 100    | 107    | 108          | 113    | 119    | 126    | 128         |
| World total catch of marine fish | 63,798 | 64,468 | 66,680       | 68,287 | 68,091 | 78,603 | 74,82:      |

TABLE 1. Catch of tuna and tuna-like fishes in the world (in tonnes)

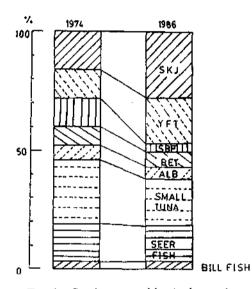



FIG. 1. Species composition in the catch.

increases in skipjack tuna and yellowfin tuna and percentage decreases in southern bluefin tuna, bigeye tuna, albacore and small tunas. These changes resulted from increased catch of purse-seiners which have started their operation since around 1980.

## CATCH COMPOSITION BY GEAR

The industrial fishery in the Indian Ocean started in the early 1950's by Japanese longliners

to catch tunas and billfishes. Thereafter, Taiwanese and Korean longliners followed their operation. In 1974 the total catch of longliners from these three countries reached

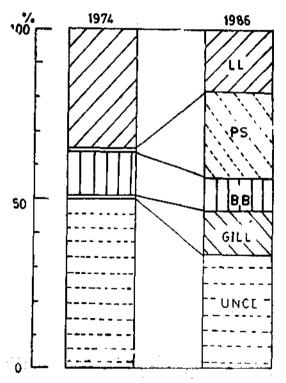



FIG. 2. Catch composition by different gears.

|          | Species     |     | 1974           | 1975   | 1976   | 1977   | 1978          | 1979              | 1980   | 1981          | 1982           | 1983   | 1984   | 1985          | 1986   |
|----------|-------------|-----|----------------|--------|--------|--------|---------------|-------------------|--------|---------------|----------------|--------|--------|---------------|--------|
| INDIAN O | CEAN        |     |                |        |        | FAO    | area 51 8     | k 57 com          | bined  |               |                |        |        |               |        |
|          | YFT         |     | 28 <b>29</b> 7 | 28390  | 30090  | 50898  | 44683         | 36982             | 34064  | 36435         | 46828          | 60663  | 93503  | 100768        | 109890 |
|          | BET         | ••  | 21183          | 30959  | 23659  | 31511  | 47379         | 31027             | 31303  | 32378         | 39144          | 44168  | 35604  | 41949         | 40621  |
|          | ALB         |     | 14964          | 5361   | 6170   | 9713   | 16653         | 16211             | 11637  | 13233         | 23205          | 17180  | 15119  | 9628          | 28031  |
|          | SBF         |     | 30543          | 21273  | 26866  | 26359  | 17122         | 1 <del>6944</del> | 24205  | 26065         | 29136          | 36741  | 30163  | 28002         | 20024  |
|          | SKJ         | ••  | 39502          | 35165  | 38612  | 30294  | 30461         | 33916             | 45835  | 45792         | 52620          | 61594  | 101922 | 136303        | 159530 |
|          | LOT         | • - | 2126           | 2421   | 3046   | 3305   | 1 <b>93</b> 6 | 4589              | 3215   | 5710          | 15337          | 15957  | 16329  | 23694         | 20797  |
|          | KAW         | ••  | 15832          | 16756  | 16529  | 15019  | 9660          | 14480             | 8282   | 23113         | 25507          | 21322  | 29080  | 29947         | 27953  |
|          | FRI         | • • | 0              | 0      | 0      | 0      | 0             | 0                 | 0      | 0             | 0              | 0      | 0      | 2466          | 1626   |
|          | BLT         | .:  | 0              | 0      | 0      | 0      | 0             | 0                 | 0      | 0             | 0              | 0      | 0      | 617           | 67     |
|          | F <b>RZ</b> | ••  | 6006           | 4057   | 2708   | 3086   | 1661          | 1701              | 1595   | 2908          | 4946           | 5630   | 9287   | 3318          | 10772  |
|          | BIP         | ••  | 0              | 0      | 0      | 0      | 0             | 0                 | 0      | 0             | 0              |        | 0      | 2762          |        |
|          | TUN         | ••  | 36476          | 28616  | 38578  | 39738  | 38433         | 41968             | 55578  | 34403         | 46069          | 42855  | 33392  | 58526         | 51130  |
| Sub Ta   | otal        | ••  | 194929         | 172998 | 186258 | 209923 | 207988        | 197818            | 215714 | 220037        | 282 <b>792</b> | 306110 | 364399 | 437980        | 47044) |
|          | СОМ         |     | 12850          | 11557  | 14364  | 17003  | 17914         | 20481             | 16018  | 34978         | 43333          | 47428  | 43359  | 57719         | 5703   |
|          | GUT         | ••  | 759            | 498    | 315    | 100    | 157           | 245               | 182    | 13661         | 15570          | 15685  | 14479  | 1 <b>9340</b> | 1383   |
|          | STS         |     | 0              | 0      | 0      | 0      | 0             | 0                 | Û      | 279           | 165            | 230    | 225    | 76            | 257    |
|          | WAH         |     | 0              | 0      | 0      | 0      | 0             | 0                 | 0      | 0             | 1              | 61     | 713    | 59            |        |
|          | KGX         | ••  | 25570          | 23801  | 28531  | 23081  | 21050         | 30798             | 34200  | 4511          | 7971           | 5422   | 3963   | 16140         | 1237:  |
| Sub To   | otal        | ••  | 39179          | 35856  | 43210  | 40184  | 39121         | 51524             | 50400  | 53 <b>429</b> | 67040          | 68826  | 62739  | 93334         | 85824  |
|          | BUM         |     | 1374           | 2286   | 1550   | 1429   | 2605          | 2534              | 2440   | 2692          | 2416           | 3146   | 3410   | 3397          | 261    |
|          | BLM         | • • | 53             | 30     | 13     | 92     | 68            | 87                | 180    | 147           | 173            | 297    | 334    | 438           | 141    |
|          | MLS         | • • | 1932           | 1161   | 833    | 1755   | 2803          | 2468              | 3025   | 3121          | 1559           | 1891   | 2148   | 4150          | 321    |
|          | SAI         | ••  | 245            | 438    | 384    | 148    | 219           | 248               | 312    | 172           | 163            | 149    | 126    | 1220          | 122    |
|          | SWO         | ••  | 726            | 983    | 774    | 923    | 1631          | 1424              | 1197   | 1395          | 1597           | 1952   | 1807   | 2943          | 251    |
|          | BIL         | ••  | 2406           | 852    | 1240   | 1453   | 2214          | 3356              | 2663   | 3165          | 4978           | 2648   | 5257   | 3407          | 490    |
| Sub Ta   | otal        | ••  | 6736           | 5750   | 4794   | 5800   | 9540          | 10117             | 9817   | 10692         | 10836          | 10083  | 11082  | 15555         | 1588   |
| Gear     | Total       |     |                |        |        |        |               |                   |        |               |                |        |        |               |        |
|          | LL          |     | 82470          | 75309  | 71089  | 102292 | 116763        | 89428             | 85455  | 86353         | 109369         | 116339 | 94518  | 98916         | 10318  |
|          | BB          |     | 31829          | 22154  | 26694  | 21131  | 18351         | 23092             | 28307  | 27187         | 25863          | 33218  | 45185  | 56323         | 5406   |
|          | PS          | ••  | 1156           | 2808   | 1877   | 1542   | 3151          | 2010              | 2308   | 3420          | 16663          | 32356  | 112628 | 140261        | 14733  |
|          | GILL        |     | 1306           | 1374   | 1931   | 1986   | 245           | 1397              | 1551   | 3873          | 25457          | 43888  | 38269  | 71739         | 7407   |
|          | UNCL        | ••  | 124083         | 112959 | 132671 | 128956 | 118139        | 143532            | 158310 | 163325        | 183316         | 159218 | 147620 | 179630        | 19349  |
|          | TOTAL       | ••  | 240844         | 214604 | 234262 | 255907 | 256649        | 25 <b>94</b> 59   | 275931 | 284158        | 360668         | 385019 | 438220 | 546869        | 57214  |
|          |             |     |                |        |        |        |               |                   |        |               |                |        |        |               |        |

•

TABLE 2. Catch (in tonnes) by species

ω

thousand t in 1986 which is almost double the catch in 1972. This is due mainly to increased catch in Maldives.

The purse seiner's operation in the western Indian Ocean has started around 1980. The catch level has increased in accordance with the increased efforts. Their target species are skipjack and yellowfin tunas. The catch of skipjack tuna in 1986 was almost 160 thousand t, half of which was caught by the purse seine fishery. Good catch rates were reported in 1987.

#### Yellowfin tuna

Yellowfin tuna is also one of the dominant species together with skipjack tuna in the Indian Ocean.

Fig. 7 shows the fishing grounds for longliners, purse seiners and artisanal fisheries. The fishing ground for longline fishery distributes widely in the whole Indian Ocean, for purse seine fishery only in the western Indian Ocean and for artisanal fishery in such coastal areas as the north and western Sumatra, Sri Lanka, Maldives, Lakshadweep Islands,

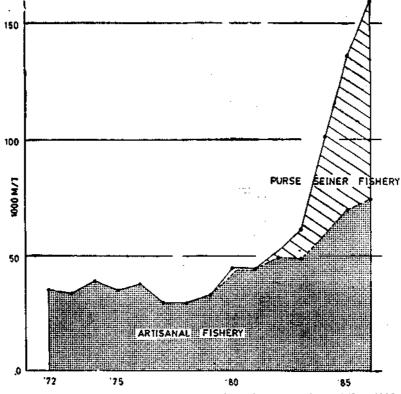



FIG. 5. Catch trend of Skipjack tuna in the Indian Ocean from 1972 to 1985.

Few catches of skipjack tuna are reported from longliners. The catch records from China (Taiwan), Japan and Korea shows that the catch are less than 100 t on average per year. Pakistan, Iran, Oman, Yemen and Somalian waters.

Longline fishery started in the early 1950's. The highest catch of yellowfin tuna caught by longliners was reported in 1968 as 77 thousand t.

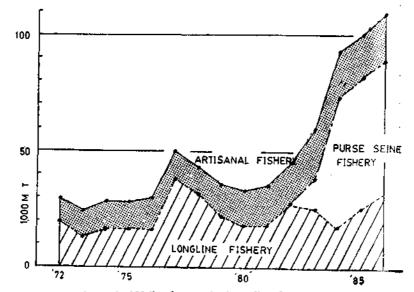



FIG. 6. Catch trend of Yellowfin tuna in the Indian Ocean from 1972 to 1985.




Fig. 7. Fishing grounds in the Indian Ocean for Skipjack and Yellowfin tunas.

Japanese and Korean longliners are presently aiming to catch bigeye tuna rather than yellowfin tuna. A deep water longline fishing technique was adapted to increase the catch of bigeye tuna in the late 1970's in the Indian Ocean. Recently, Taiwanese have also intensified their catch on bigeye tuna. Albacore is marketed as white meat tuna and is mainly used as material for canning. Skipjack tuna is also used as material for canning, but can only be marketed as light-meat tuna and is sold at a lower price than albacore.

Fig. 12 shows the catch trend of albacore

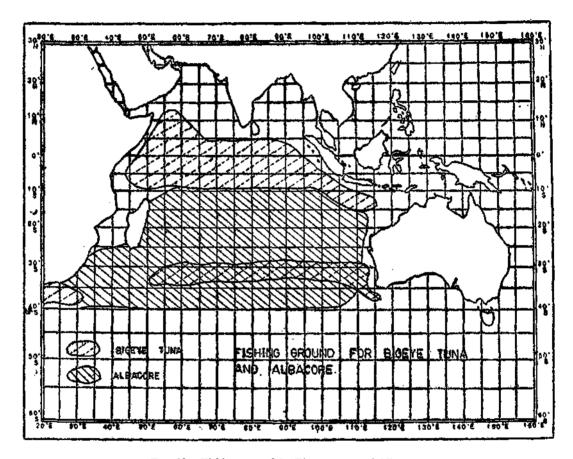


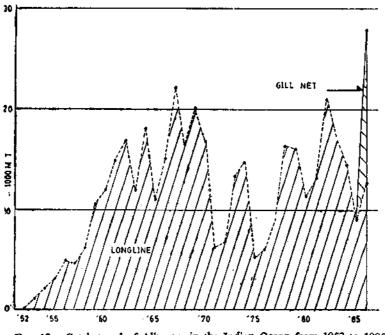

FIG. 10. Fishing ground for Bigeye tuna and Albacore,

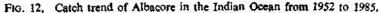
## Albacore

The fishing ground of albacore in the Indian Ocean as shown in Fig. 10, is located in the southern part of the Indian Ocean between 10° S and 40°S. which were exclusively caught by longliners upto 1984. There were some minor catch by purse seiners. A gill netting fleet from China (Taiwan) has started its operation to catch albacore in the Indian Ocean since 1984.

The catch by gill netters was 15,176 t in albacore are very low and was only 17% of 1986 which was more than the longline catch.

the total in 1986.


## Small tunas


Taiwanese longliners were operating in the Indian Ocean aiming to catch albacore from their fishing ports at Reunion and Port Louis. Japanese and Korean longliner's catch of

Dominant species in this category in the Indian Ocean are longtail tuna, kawakawa and frigate tuna. These are neritic species and are caught by artisanal fisheries.



FIG. 11. Catch trend of Bigeye tuna caught by longliners in the Indian Ocean from 1952 to 1985.





Iran, Pakistan, UAE. India and Thailand produce most of the longtail tuna in this area. The total catch of longtail tuna was 20 thousand t in 1986. It has shown an increasing tendency in the catch in these countries.

Kawakawa is very common in the Indian Ocean. Major producing countries are India, Iran, Maldives, Pakistan, Sri Lanka, UAE, Yemen, Comoros and Seychelles. The total Frigate tuna are also very common and can be seen more or less in every coastal country in the Indian Ocean. There is also a statistical problem as mentioned in the section of kawakawa. Due to the above reason, it is difficult to detect the catch tendency of this species.

As a whole for small tunas, as shown in Fig. 13, it can be said that the catch has been on an upward trend. But it should be noted that

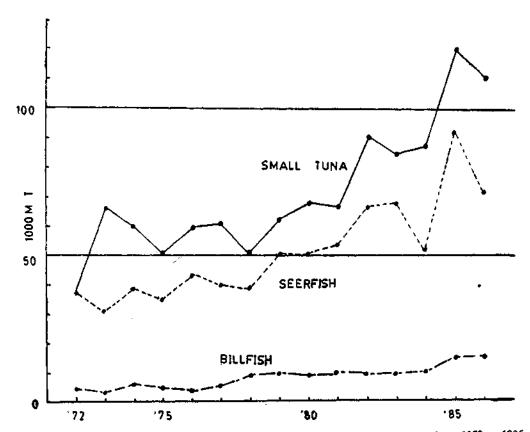
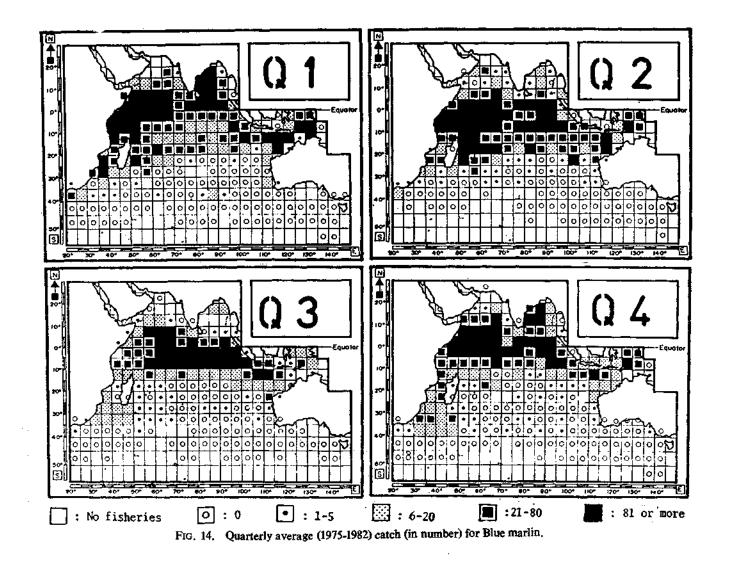




FIG. 13. Catch trend of small tunas, seerfishes and Billfishes in the Indian Ocean from 1972 to 1985.

catch in these countries was 28 thousand t for 1986. Catch levels have fluctuated from year to year and it is uncertain whether the catch tendency is for an increase or decrease. A problem with this species is inclusion of landings as frigate tuna in some cases and as unclassified tuna in other cases. the upward trend was partly attributed to the development and improvement of the statistical data collection system in some countries.

## Seerfish

Under seerfish, there are two popular species, narrow-barred king mackerel Scomberomorus



commerson and Indo-Pacific king mackerel S. guttatus. In some countries, these are classified into one category as seerfish in the statistics.

The major producing countries of these species in the area are Australia, India, Indonesia, Oman, Pakistan, U.A.E., Yemen, Sri Lanka, Saudi Arabia, Tanzania and Thailand.

As shown in Fig. 13 the catch of seerfish has been on an upward trend as a whole. Also, it should be noted that a statistical improvement contributed partly to the increased catch.

## Billfish

Under billfish, there are 5 popular species in the Indian Ocean, *i.e.*, blue marlin, black marlin, striped marlin, sailfish and swordfish. Although these are caught by artisanal fisheries in coastal area, many of them are caught by longliners from China (Taiwan), Japan and Korea. There are also sport fishermen to catch these species. In Kenya and Mauritius, there are clubs for such sport fishermen.

Fishing grounds for each species for longlining are shown in Fig. 14 to 18.

Sri Lanka has improved its data collection for billfish since 1984, which contributed to the increased catch statistics. There are many fields to be improved in data collection system for these species in coastal countries.

According to the statistics collected by IPTP, as shown in Fig. 13, the catch of billfish, all species combined did not fluctuate, but increased slightly during the past 10 years.

### CONCLUSION

A catch is a product obtained through fishing. Fishing is an economical activity. Fishermen or fishing industries will get incomes or profits through fisheries. Thus, the catch reflects socio-economic conditions surrounding fisheries. Such elements as price of fish, consumers purchasing power, operation cost of fishing (fuel price and wage price of crew) and fishing technology, etc. concern directly or indirectly with the catch.

Tuna and tuna-like species are presently utilized widely not only as table fish to local people, but also as export items to such fish markets as Japanese sashimi, American and European canning. Tuna is called 'sea chicken' as a competitor with chicken. Statistics reveal that US seafood consumption has been increasing from 12.3 pounds to 14.5 pounds per capita consumption between 1982 and 1985. There is good demand for tuna and tuna-like fishes in the world. This demand would be further increased with the increasing population and a good reputation that sea food is favourable for the health of human being.

The present status of resources of tuna and tuna-like species were discussed at the Expert Consultation on Stock Assessment of Tunas in the Indian Ocean in Colombo, December 1986. Following are the summaries of discussions at the Expert Consultation for the status of resources by species.

The fishery of southern bluefin tuna is at present under control by three countries *i.e.*, Australia, Japan and New Zealand. It is presumed that there is a large population of skipjack tuna in the Indian Ocean. Thus, this fish is likely to be able to yield more production. Bigeye tuna resources was highly exploited by longline fishery with the deeplongline technique. It appears that without a new breakthrough in fishing technology that can target on an underexploited part of the stock, further increase in fishing effort will not result in a substantial increase in catch. Albacore were also exploited by longliners at a high catch level. A continuation of current catch levels should not have much impact on the status of the stock. However, the increased

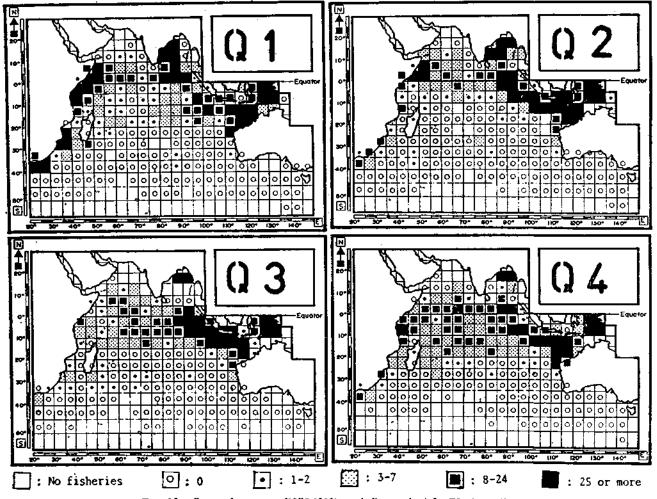



FIG. 15. Quarterly average (1975-1982) catch (in number) for Black marlin.

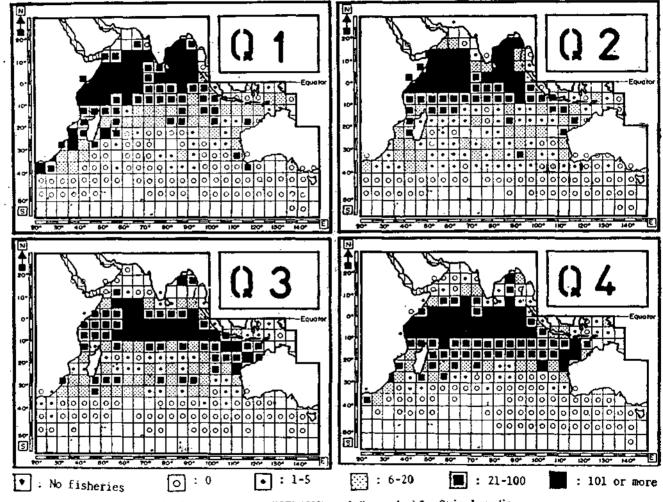



FIG. 16. Quarterly average (1975-1982) catch (in number) for Striped marlin.

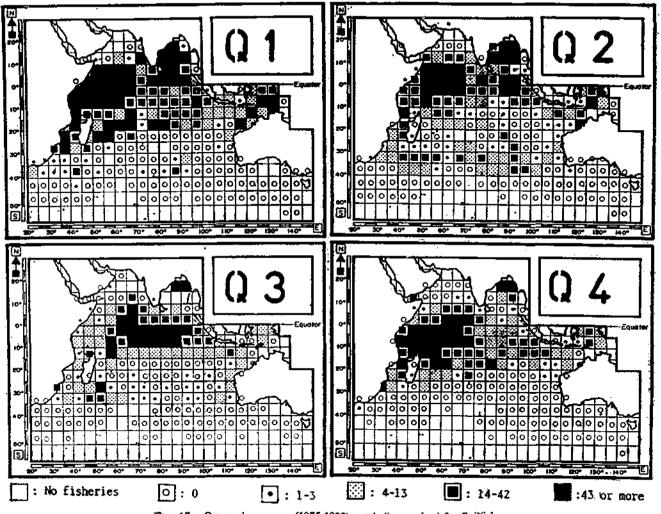



FIG. 17. Quarterly average (1975-1982) catch (in number) for Sailfish.




FIG. 18. Quarterly average (1975-1982) catch (in number) for Swordfish.

fishing efforts by gill netters which has been from these areas. The potential yield of Auxis introduced into the Indian Ocean since 1984/, species could be the highest of all tropical 1985, might have given some impact to the small tunas in the Indian Ocean. stock status. This requires close monitoring to assess the status of this resource.

Yellowfin tuna: Are currently captured by longline, purse seine and artisanal fisheries in the Indian Ocean. The Expert Consultation could not conclude any definite status for this species due to lack of data on several key mation, it was far from starting discussion parameters.

Small tunas : It stated that stock assessment study is an extremely difficult task because of lack of information on stock structure for each of these species. However, it also stated as hypothetical status that significant increase in the production of longtail tuna can be expected with the expansion of the present exploitation. Further improvement and devefishery off the northwest coast of India and lopment of data collection on catch/effort off Bangladesh and Burma. Production of and biological parameters is highly recommenkawakawa can also be expected to increase ded as a basis for stock analyses.

Seerfish : Although seerfish fisheries are so important in the region, potential of seerfish catch is unknown and considerable effort is required to evaluate these resources.

Billfish : Due to incomplete statistical inforon potentiality for these fishes.

In order to meet increasing demands, tuna fisheries will be further developed in the Indian Ocean in both industrial and artisanal fisheries. However, owing to the nature of highly migratory species, these resources need to be closely monitored on a global basis to prevent over